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Abstract Cognitive concept learning is to learn concepts

from a given clue by simulating human thought processes

including perception, attention and thinking. In recent

years, it has attracted much attention from the communities

of formal concept analysis, cognitive computing and

granular computing. However, the classical cognitive

concept learning approaches are not suitable for incomplete

information. Motivated by this problem, this study mainly

focuses on cognitive concept learning from incomplete

information. Specifically, we put forward a pair of

approximate cognitive operators to derive concepts from

incomplete information. Then, we propose an approximate

cognitive computing system to perform the transformation

between granular concepts as incomplete information is

updated periodically. Moreover, cognitive processes are

simulated based on three types of similarities. Finally,

numerical experiments are conducted to evaluate the pro-

posed cognitive concept learning methods.

Keywords Concept learning � Cognitive computing �
Granular computing � Granular concept � Similarity

1 Introduction

Cognitive computing is viewed as the development of

computer systems modeled on the human brain [37]. As far

as we know, such kind of computing is to simulate human

thought processes by a computer such as thinking, learning,

perception and attention. Cognitive learning, as a useful

mathematical tool for the realization of cognitive com-

puting, is considered as the function of simulating cogni-

tive processes including the operations of learning,

thinking and remembering something. With the develop-

ment of cognitive learning, it has absorbed many effective

methods from psychology, information theory and mathe-

matics [36].

As is well known, a concept is the basic unit of human

cognition [39]. Currently, many kinds of concepts

[18, 34, 45, 46] have been developed to meet different

requirements in the real world. It should be pointed out that

these concepts have been applied in many fields such as

rough analysis, rule acquisition and knowledge discovery

[2, 4, 5, 12, 16, 19, 25, 27, 28, 38]. Moreover, granular

computing [21–24, 41, 44, 48, 49] has been incorporated

into concept learning to improve the learning efficiency

[10, 20, 40].

Cognitive concept learning is to learn concepts from a

given clue by simulating human thought processes. It was

firstly investigated by Zhang and Xu [51], Wang [36] and

Yao [47]. In recent years, there has been a growing interest
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on this topic. For instance, Xu et al. [43] discussed how to

obtain sufficient and necessary information granules from

an arbitrary information granule. Li et al. [14] put forward

three cognitive concept learning methods from the per-

spectives of philosophy and cognitive psychology, and they

[11] also designed a cognitive concept learning framework

for big data. Moreover, the theory of three-way decisions

has been incorporated into cognitive concept learning [15]

as well. In addition, Aswani Kumar et al. [3] analyzed the

concept learning mechanism of exploring cognitive func-

tionalities of bidirectional associative memory. Very

recently, Xu and Li [42] reconsidered the issue of cognitive

concept learning under a fuzzy environment.

However, with the deepening of the research on cognitive

concept learning, it is found that the classical cognitive con-

cept learning methods are restrictive for many applications.

For example, they are not suitable for incomplete information

which is often encountered in the real world [13]. The main

theme of this paper is to address this issue. Specifically, a pair

of approximate cognitive operators is proposed to learn con-

cepts from incomplete information. Then, an approximate

cognitive computing system is established to perform the

transformation between granular concepts as incomplete

information is updated periodically. In addition, cognitive

processes are simulated based on three types of similarities.

Finally, we conduct some numerical experiments to evaluate

the proposed cognitive concept learning methods.

The remainder of this paper is organized as follows.

Section 2 analyzes cognitive mechanism of learning

approximate concepts from incomplete information.

Section 3 establishes an approximate cognitive computing

system. Section 4 simulates cognitive processes based on

similarity. Section 5 conducts some numerical experiments

to assess the proposed concept learning methods. The paper

is concluded in Sect. 6 with a brief summary and an out-

look for further research.

2 Cognitive mechanism of learning approximate
concepts from incomplete information

First of all, let us begin this section with an example.

Example 1 Table 1 depicts a dataset of four patients who

suffer from severe acute respiratory syndrome (SARS)

[14]. In the table, Fever, Cough, Headache and Difficulty

breathing are four symptoms which were observed from

the current patients.

As time goes on, however, there will appear more SARS

patients from whom new symptoms could be found such as

Diarrhea, Muscle aches, Nausea and vomiting. Suppose

that the updating information is shown in Table 2.

From Table 2, it is noticed that the values of patients 1,

2, 3 and 4 under the new symptoms (Diarrhea, Muscle

aches, Nausea and vomiting) were missing. This is not

surprising because the previous patients may have gone

and could not be contacted when it is able to test these

symptoms by new technologies.

Unfortunately, for such a SARS dataset with incomplete

information, the classical cognitive concept learning

methods will become invalid since missing values are not

allowed for them. Therefore, it is necessary to develop

some new cognitive concept learning methods which are

able to handle incomplete information.

To facilitate our subsequent discussions, let U be a

nonempty object set and A be an attribute set. Moreover,

2U and 2A are used to denote the power sets of U and A,

respectively. Then, a partial order relation is defined on the

Cartesian product 2A � 2A as

Table 1 A SARS dataset

Patient Fever Cough Headache Difficulty breathing

1 Yes Yes No Yes

2 No Yes No Yes

3 No No Yes No

4 Yes No Yes No

Table 2 A SARS dataset with information updating on patients and symptoms

Patient Fever Cough Headache Difficulty breathing Diarrhea Muscle aches Nausea and vomiting

1 Yes Yes No Yes ? ? ?

2 No Yes No Yes ? ? ?

3 No No Yes No ? ? ?

4 Yes No Yes No ? ? ?

5 Yes No Yes No Yes No No

6 No Yes No No No Yes No

7 Yes No No Yes No No Yes

8 No Yes No No No Yes Yes

9 No No Yes No Yes No No
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ðB1;C1Þ� ðB2;C2Þ () B1 � B2 and C1 � C2 ð1Þ

and the intersection and union are respectively given by

ðB1;C1Þ \ ðB2;C2Þ ¼ ðB1 \ B2;C1 \ C2Þ;
ðB1;C1Þ [ ðB2;C2Þ ¼ ðB1 [ B2;C1 [ C2Þ:

ð2Þ

Definition 1 Let f : 2U ! 2A � 2A and g : 2A � 2A ! 2U

be two mappings. For X1;X2 � U and ðB;CÞ 2 2A � 2A, if

the following properties hold:

(i) X1 � X2 ) f ðX1Þ� f ðX2Þ,
(ii) f ðX1 [ X2Þ� f ðX1Þ \ f ðX2Þ,
(iii) gðB;CÞ ¼ fx 2 UjðB;CÞ� f ðfxgÞg,
then f and g are called approximate-concept-forming cog-

nitive operators (or simply approximate cognitive

operators).

From Definition 1, it is easy to obtain the following

properties:

f ðX1 [ X2Þ ¼ f ðX1Þ \ f ðX2Þ;
gððB1;C1Þ [ ðB2;C2ÞÞ ¼ gðB1;C1Þ \ gðB2;C2Þ: ð3Þ

Theorem 1 Let f and g be approximate cognitive oper-

ators. Then, they form a Galois connection between 2U and

2A � 2A.

Proof From (iii) of Definition 1, it is easy to get

ðB1;C1Þ� ðB2;C2Þ ¼) gðB1;C1Þ � gðB2;C2Þ: ð4Þ

Note that gðf ðXÞÞ ¼ fx 2 Ujf ðXÞ� f ðfxgÞg, and any x 2 X

satisfies f ðXÞ� f ðfxgÞ based on (i) of Definition 1. So, we

obtain

X � gðf ðXÞÞ: ð5Þ

Suppose that X0 is the objects satisfying ðB;CÞ� f ðfxgÞ.
Then, by (iii) of Definition 1 and Eq. (3), it follows

f ðgðB;CÞÞ ¼ f ðfx 2 UjðB;CÞ� f ðfxgÞgÞ
¼ f ðX0Þ
¼
\

x2X0

f ðfxgÞ

� ðB;CÞ:

ð6Þ

Combining (i) of Definition 1 with Eqs. (4), (5) and (6), we

conclude that f and g form a Galois connection between 2U

and 2A � 2A. h

Definition 2 Let f and g be approximate cognitive oper-

ators. For X � U and ðB;CÞ 2 2A � 2A, if f ðXÞ ¼ ðB;CÞ
and gðB;CÞ ¼ X, then (X, (B, C)) is called a concept of the

approximate cognitive operators f and g (or simply

approximate cognitive concept). In this case, X and

(B, C) are referred to as the extent and intent of the

approximate cognitive concept (X, (B, C)), respectively.

Moreover, the infimum (
V
) and supremum (

W
) of a set

of approximate cognitive concepts fðXt; ðBt;CtÞÞ j t 2 Tg
are respectively given by

^

t2T
Xt; Bt;Ctð Þð Þ ¼

\

t2T
Xt; fg

[

t2T
Bt;Ctð Þ

 ! !
;

_

t2T
Xt; Bt;Ctð Þð Þ ¼ gf

[

t2T
Xt

 !
;
\

t2T
Bt;Ctð Þ

 !
;

ð7Þ

where fgð�Þ and gf ð�Þ denote the composite mappings

f ðgð�ÞÞ and gðf ð�ÞÞ, respectively.
In what follows, we show how to derive approximate

cognitive concepts from incomplete information. Before

embarking on this issue, we need to construct a special pair

of approximate cognitive operators f and g.

Let I be a ‘‘three-valued’’ mapping fromU � A to f1; 0; ?g
for describing incomplete information. Specifically, Iðx; aÞ ¼
1 indicates that the object x possesses the attribute a, Iðx; aÞ ¼
0 indicates that the object x does not possess the attribute a,

and Iðx; aÞ ¼ ? indicates that it is unknownwhether the object

x possesses the attribute a. Then, for any X � U, two

mappings pð�Þ and hð�Þ are respectively defined as
pðXÞ ¼ fa 2 Aj8x 2 X; Iðx; aÞ ¼ 1g;
hðXÞ ¼ fa 2 Aj8x 2 X; Iðx; aÞ ¼ 1 or Iðx; aÞ ¼ ?g:

ð8Þ

In a similar manner, for any B � A, we define

pðBÞ ¼ fx 2 Uj8a 2 B; Iðx; aÞ ¼ 1g;
hðBÞ ¼ fx 2 Uj8a 2 B; Iðx; aÞ ¼ 1 or Iðx; aÞ ¼ ?g:

ð9Þ

Furthermore, pð�Þ and hð�Þ are used to construct a special

pair of approximate cognitive operators f and g:

f ðXÞ ¼ ðpðXÞ; hðXÞÞ;
gðB;CÞ ¼ fx 2 UjðB;CÞ� f ðfxgÞg:

ð10Þ

Example 2 Continued with Example 1. For convenience,

in Table 2, a, b, c, d, e, f and g are used to represent the

symptoms Fever, Cough, Headache, Difficulty breathing,

Diarrhea, Muscle aches, and Nausea and vomiting, respec-

tively.Moreover, number 1 is used to replace ‘‘Yes’’, number

0 is used to replace ‘‘No’’, and the question mark ‘‘?’’ is

reserved. Then, combining Eqs. (7) and (8)with Definition 2,

we can verify that (45, (ac, ace)) is an approximate cogni-

tive concept, where 45, ac and ace are the abbreviations of

f4; 5g, fa; cg and fa; c; eg, respectively.

3 An approximate cognitive computing system

In the real world, objects and attributes are updated

dynamically, and they often accompany with incomplete

information. So, the currently obtained approximate
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cognitive concepts need to be updated from time to time.

To address this problem, an approximate cognitive com-

puting system is proposed in this section.

3.1 Information granules and granular concepts

We first put forward the notion of information granules of

approximate cognitive operators f and g. For brevity,

hereinafter, f ðfxgÞ and pðfagÞ are rewritten as f(x) and

pðaÞ, and pðpð�ÞÞ, hðpð�ÞÞ and f ðpð�ÞÞ are abbreviated as

ppð�Þ, hpð�Þ and fpð�Þ, respectively.

Definition 3 Let f and g be approximate cognitive oper-

ators. Then, f G ¼ ffxg7!f ðxÞjx 2 Ug and gG ¼
ffpðaÞ7!gfpðaÞja 2 Ag are called information granules of

f and g, respectively.

The main purpose of introducing information granules is

to simplify the description of approximate cognitive

operators. In other words, basic information granules have

the same ability to describe the mapping information under

consideration. See the following theorem for the details.

Theorem 2 Let f G and gG be the information granules of

approximate cognitive operators f and g. For X � U and

ðB;CÞ 2 2A � 2A with B ¼
S

a2B ppðaÞ and C ¼
S

a2B
hpðaÞ, we have

f ðXÞ ¼
\

x2X
f GðxÞ;

gðB;CÞ ¼
\

a2B
gGfpðaÞ:

ð11Þ

Proof By Eq. (3), it follows f ðXÞ ¼
T
x2X

f GðxÞ directly.

Besides, based on Eqs. (8), (9) and (10), we get

gðB;CÞ ¼ g
[

a2B ppðaÞ;
[

a2B hpðaÞ
� �

¼ g
[

a2BðppðaÞ; hpðaÞÞ
� �

¼ g
[

a2B fpðaÞ
� �

¼
\

a2B
gGfpðaÞ:

h

Theorem 3 Let f and g be approximate cognitive oper-

ators. Then, for any x 2 U and a 2 A, both gf GðxÞ; f GðxÞð Þ
and gGfpðaÞ; fpðaÞð Þ are approximate cognitive concepts.

Proof The proof is obvious from Definition 2. h

Definition 4 Let f and g be approximate cognitive oper-

ators. For any x 2 U and a 2 A, we say that gf GðxÞ; f GðxÞð Þ
and gGfpðaÞ; fpðaÞð Þ are granular concepts.

It can be known from Definition 3 and Theorem 2 that

granular concepts can easily be computed by the informa-

tion granules of f and g.

Theorem 4 Let f and g be approximate cognitive oper-

ators, and (X, (B, C)) be an approximate cognitive con-

cept. Then,

(i) ðX; ðB;CÞÞ ¼
W
x2X

gf GðxÞ; f GðxÞð Þ;

(ii) ðX; ðB;CÞÞ ¼
V
a2B

gGfpðaÞ; fpðaÞð Þ if for any

c 2 CnB, there exists b 2 B such that pðbÞ � hðcÞ.

Proof Note that ðB;CÞ ¼ f ðXÞ ¼ f
S

x2Xfxg
� �

¼
T
x2X

f GðxÞ. Based on Eq. (7), we know that (X, (B, C)) andW
x2X

gf GðxÞ; f GðxÞð Þ have the same intent. As a result, they

are the same approximate cognitive concept. That is, (i) is

proved. The remainder is to prove (ii).

Firstly, we show B ¼
S

a2B ppðaÞ. Note that B �S
a2B ppðaÞ due to a 2 ppðaÞ. For any b 2

S
a2B ppðaÞ,

there exists a0 2 B such that b 2 ppða0Þ. Since

a0 2 B ) pða0Þ � pðBÞ � X ) ppða0Þ � pðXÞ ¼ B, it

follows b 2 B, yielding
S

a2B ppðaÞ � B. To sum up, B ¼S
a2B ppðaÞ is true.
Secondly, we prove C ¼

S
a2B hpðaÞ. On one hand, for

any c 2 C, if c 2 B, then c 2
S

a2B hpðaÞ due to a 2 hpðaÞ;
otherwise, c 2 CnB. In this case, based on the assumption

that there exists b 2 B such that pðbÞ � hðcÞ, we have

c 2 hpðbÞ. That is, c 2
S

a2B hpðaÞ is also true. As a result,

C �
S

a2B hpðaÞ. On the other hand, for any

c 2
S

a2B hpðaÞ, there exists a0 2 B such that c 2 hpða0Þ,
i.e., pða0Þ � hðcÞ. Since X � pðBÞ � pða0Þ, it follows

X � hðcÞ. Note that c 2 hhðcÞ � hðXÞ ¼ C. Then, we

conclude
S

a2B hpðaÞ � C. In summary, C ¼
S

a2B hpðaÞ
is proved.

According to Theorem 2, we obtain X ¼ gðB;CÞ
¼
T
a2B

gGfpðaÞ. Then, we know from Eq. (7) that

(X, (B, C)) and
V
a2B

gGfpðaÞ; fpðaÞð Þ have the same extent.

As a result, they are the same approximate cognitive

concept. Consequently, (ii) is true. h

Theorem 4 indicates that any approximate cognitive

concept can be induced by granular concepts. So, among

all approximate cognitive concepts, granular concepts are

the basic information granules. For convenience, we denote

the set of all granular concepts by

Gfg ¼ gf GðxÞ; f GðxÞ
� �

�����x 2 U

( )
[ gGfpðaÞ; fpðaÞ

� �
�����a 2 A

( )
:

ð12Þ

In the rest of this paper, we discuss how to compute Gfg

when objects and attributes are updated in batch.
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3.2 A cognitive computing system for learning

granular concepts

To facilitate our subsequent discussions, n object sets U1 �
U2 � � � � � Un are denoted as fUtg", and n attribute sets

A1 � A2 � � � � � An are denoted as fAtg". Let DUi�1 ¼
Ui � Ui�1 and DAi�1 ¼ Ai � Ai�1.

To express and process different types of incomplete

information, let Ii�1 be a ‘‘three-valued’’ mapping from

Ui�1 � Ai�1 to f1; 0; ?g, IDUi�1
be a ‘‘three-valued’’ map-

ping from DUi�1 � Ai�1 to f1; 0; ?g, IDAi�1
be a ‘‘three-

valued’’ mapping from Ui � DAi�1 to f1; 0; ?g, and Ii be a

‘‘three-valued’’ mapping from Ui � Ai to f1; 0; ?g.
Then, we define sixteen mappings

pi�1ðXÞ ¼ fa 2 Ai�1j8x 2 X; Ii�1ðx; aÞ ¼ 1g;
hi�1ðXÞ ¼ fa 2 Ai�1j8x 2 X; Ii�1ðx; aÞ ¼ 1 or

Ii�1ðx; aÞ ¼ ?g;
pi�1ðBÞ ¼ fx 2 Ui�1j8a 2 B; Ii�1ðx; aÞ ¼ 1g;
hi�1ðBÞ ¼ fx 2 Ui�1j8a 2 B; Ii�1ðx; aÞ ¼ 1 or

Ii�1ðx; aÞ ¼ ?g;

pDUi�1
ðXÞ ¼ fa 2 Ai�1j8x 2 X; IDUi�1

ðx; aÞ ¼ 1g;
hDUi�1

ðXÞ ¼ fa 2 Ai�1j8x 2 X; IDUi�1
ðx; aÞ ¼ 1 or

IDUi�1
ðx; aÞ ¼ ?g;

pDUi�1
ðBÞ ¼ fx 2 DUi�1j8a 2 B; IDUi�1

ðx; aÞ ¼ 1g;
hDUi�1

ðBÞ ¼ fx 2 DUi�1j8a 2 B; IDUi�1
ðx; aÞ ¼ 1 or

IDUi�1
ðx; aÞ ¼ ?g;

pDAi�1
ðXÞ ¼ fa 2 DAi�1j8x 2 X; IDAi�1

ðx; aÞ ¼ 1g;
hDAi�1

ðXÞ ¼ fa 2 DAi�1j8x 2 X; IDAi�1
ðx; aÞ ¼ 1 or

IDAi�1
ðx; aÞ ¼ ?g;

pDAi�1
ðBÞ ¼ fx 2 Uij8a 2 B; IDAi�1

ðx; aÞ ¼ 1g;
hDAi�1

ðBÞ ¼ fx 2 Uij8a 2 B; IDAi�1
ðx; aÞ ¼ 1 or

IDAi�1
ðx; aÞ ¼ ?g;

piðXÞ ¼ fa 2 Aij8x 2 X; Iiðx; aÞ ¼ 1g;
hiðXÞ ¼ fa 2 Aij8x 2 X; Iiðx; aÞ ¼ 1 or

Iiðx; aÞ ¼ ?g;
piðBÞ ¼ fx 2 Uij8a 2 B; Iiðx; aÞ ¼ 1g;
hiðBÞ ¼ fx 2 Uij8a 2 B; Iiðx; aÞ ¼ 1 or Iiðx; aÞ ¼ ?g:

Furthermore, four pairs of approximate cognitive operators

are defined as

ðiÞfi�1 : 2
Ui�1 ! 2Ai�1 � 2Ai�1 ; gi�1 : 2

Ai�1 � 2Ai�1 ! 2Ui�1 ;

ðiiÞfDUi�1
: 2DUi�1 ! 2Ai�1 � 2Ai�1 ; gDUi�1

: 2Ai�1 � 2Ai�1 ! 2DUi�1 ;

ðiiiÞfDAi�1
: 2Ui ! 2DAi�1 � 2DAi�1 ; gDAi�1

: 2DAi�1 � 2DAi�1 ! 2Ui ;

ðivÞfi : 2Ui ! 2Ai � 2Ai ; gi : 2
Ai � 2Ai ! 2Ui ;

where

fi�1ðXÞ ¼ ðpi�1ðXÞ; hi�1ðXÞÞ;
gi�1ðB;CÞ ¼ fx 2 Ui�1jðB;CÞ� fi�1ðxÞg;

ð13Þ

fDUi�1
ðXÞ ¼ ðpDUi�1

ðXÞ; hDUi�1
ðXÞÞ;

gDUi�1
ðB;CÞ ¼ fx 2 DUi�1jðB;CÞ� fDUi�1

ðxÞg;
ð14Þ

fDAi�1
ðXÞ ¼ ðpDAi�1

ðXÞ; hDAi�1
ðXÞÞ;

gDAi�1
ðB;CÞ ¼ fx 2 UijðB;CÞ� fDAi�1

ðxÞg;
ð15Þ

fiðXÞ ¼ ðpiðXÞ; hiðXÞÞ;
giðB;CÞ ¼ fx 2 UijðB;CÞ� fiðxÞg:

ð16Þ

In fact, the above approximate cognitive operators:

(i) fi�1; gi�1, (ii) fDUi�1
; gDUi�1

, (iii) fDAi�1
; gDAi�1

and (iv)

fi; gi are formed by adding objects and attributes in

sequence. In order to establish a cognitive computing

system for updating granular concepts, we need to further

clarify their inner relationships.

Theorem 5 Let (i) fi�1; gi�1, (ii) fDUi�1
; gDUi�1

, (iii)

fDAi�1
; gDAi�1

and (iv) fi; gi be the approximate cognitive

operators specified in Eqs. (13)–(16). Then, we have

f Gi ðxÞ ¼
(

f Gi�1ðxÞ [ f GDAi�1
ðxÞ; if x 2 Ui�1;

f GDUi�1
ðxÞ [ f GDAi�1

ðxÞ; otherwise.
ð17Þ

Proof By Eq. (16), it follows f Gi ðxÞ ¼ ðpiðxÞ; hiðxÞÞ. If
x 2 Ui�1, we obtain

piðxÞ ¼ fa 2 AijIiðx; aÞ ¼ 1g
¼ fa 2 Ai�1 [ DAi�1jIiðx; aÞ ¼ 1g
¼ fa 2 Ai�1jIiðx; aÞ ¼ 1g [ fa 2 DAi�1jIiðx; aÞ ¼ 1g
¼ pi�1ðxÞ [ pDAi�1

ðxÞ;

hiðxÞ ¼ fa 2 AijIiðx; aÞ ¼ 1 or Iiðx; aÞ ¼ ?g
¼ fa 2 Ai�1 [ DAi�1jIiðx; aÞ ¼ 1 or Iiðx; aÞ ¼ ?g
¼ fa 2 Ai�1jIiðx; aÞ ¼ 1 or Iiðx; aÞ ¼ ?g
[ fa 2 DAi�1jIiðx; aÞ ¼ 1 or Iiðx; aÞ ¼ ?g
¼ hi�1ðxÞ [ hDAi�1

ðxÞ:

Therefore, we get

f Gi ðxÞ ¼ ðpiðxÞ; hiðxÞÞ
¼ ðpi�1ðxÞ [ pDAi�1

ðxÞ; hi�1ðxÞ [ hDAi�1
ðxÞÞ

¼ ðpi�1ðxÞ; hi�1ðxÞÞ [ ðpDAi�1
ðxÞ; hDAi�1

ðxÞÞ
¼ f Gi�1ðxÞ [ f GDAi�1

ðxÞ:

The conclusion f Gi ðxÞ ¼ f GDUi�1
ðxÞ [ f GDAi�1

ðxÞ can be proved

in a similar manner when x 2 DUi�1. h

Int. J. Mach. Learn. & Cyber. (2017) 8:159–170 163

123



Theorem 5 shows how to obtain f Gi ðxÞ (x 2 Ui). In fact,

they can further be used to compute

gif
G
i ðxÞ ¼ y 2 Uijf Gi ðxÞ� f Gi ðyÞ

� �
: ð18Þ

That is, we find an approach to generate the granular

concepts gif
G
i ðxÞ; f Gi ðxÞ

� �
. At the same time, f Gi ðxÞ (x 2 Ui)

can be used to compute

fipiðaÞ ¼
\

x2piðaÞ
f Gi ðxÞ ð19Þ

and

gGi fipiðaÞ ¼ x 2 UijfipiðaÞ� f Gi ðxÞ
� �

: ð20Þ

That is to say, we also find an approach to generate the

granular concepts gGi fipiðaÞ; fipiðaÞ
� �

(a 2 Ai). To sum up,

we have the following theorem.

Theorem 6 Let (i) fi�1; gi�1, (ii) fDUi�1
; gDUi�1

, (iii)

fDAi�1
; gDAi�1

and (iv) fi; gi be the approximate cognitive

operators specified in Eqs. (13)–(16). Then, the granular

concepts Gfigi of fi and gi can be computed by combining

Gfi�1gi�1
with f GDUi�1

and f GDAi�1
.

Proof It is immediate from Eqs. (17), (18), (19) and

(20). h

Definition 5 Let (i) fi�1; gi�1, (ii) fDUi�1
; gDUi�1

, (iii)

fDAi�1
; gDAi�1

and (iv) fi; gi be the approximate cognitive

operators specified in Eqs. (13)–(16). We say that ASfigi ¼
ðGfi�1gi�1

; f GDUi�1
; f GDAi�1

Þ is an approximate cognitive com-

puting state. Furthermore, AS ¼
Sn

i¼2fASfigig is said to be

an approximate cognitive computing system.

It can be known from Definition 5 that an approximate

cognitive computing system is constituted by a series of

approximate cognitive computing states. Notice that gran-

ular concepts with objects and attributes being updated

once are considered as a state. This is in accordance with

our common sense. In fact, it is impossible to directly

obtain the granular concepts of an approximate cognitive

computing system since the information is updated

dynamically. In other words, we only know the granular

concepts from one state to another. Here, we adopt the

recursive strategy to compute the granular concepts Gf1g1 ,

Gf2g2 , � � �, Gfngn in sequence.

Based on the above discussion, we are ready to propose

a procedure (called Algorithm 1) to compute the granular

concepts Gfngn of an approximate cognitive computing

system AS ¼
Sn

i¼2fASfigig.

The correctness of Algorithm 1 is guaranteed by

Eqs. (17), (18), (19) and (20). Its time complexity is ana-

lyzed as follows. Based on Eq. (12), running Step 1 takes

OððjU1j þ jA1jÞjU1jjA1jÞ. Similarly, running Steps 3–18

takes OððjUij þ jAijÞjUijjAijÞ. So, the time complexity of

Algorithm 1 is OðnðjUnj þ jAnjÞjUnjjAnjÞ, where n is the

number of approximate cognitive computing states. That is,

Algorithm 1 needs polynomial time.

Finally, we use an example to illustrate Algorithm 1.

Example 3 Continued with Example 2. Let U1 ¼
f1; 2; 3; 4g and A1 ¼ fa; b; c; dg. Then, we have the fol-

lowing equalities:

f G1 ð1Þ ¼ ðabd; abdÞ; f G1 ð2Þ ¼ ðbd; bdÞ; f G1 ð3Þ ¼ ðc; cÞ; f G1 ð4Þ ¼ ðac; acÞ;
g1f

G
1 ð1Þ ¼ f1g; g1f G1 ð2Þ ¼ f1; 2g; g1f G1 ð3Þ ¼ f3; 4g; g1f G1 ð4Þ ¼ f4g;

p1ðaÞ ¼ f1; 4g; p1ðbÞ ¼ f1; 2g; p1ðcÞ ¼ f3; 4g; p1ðdÞ ¼ f1; 2g;
f1p1ðaÞ ¼ ða; aÞ; f1p1ðbÞ ¼ ðbd; bdÞ; f1p1ðcÞ ¼ ðc; cÞ; f1p1ðdÞ ¼ ðbd; bdÞ;
gG1 f1p1ðaÞ ¼ f1; 4g; gG1 f1p1ðbÞ ¼ f1; 2g;
gG1 f1p1ðcÞ ¼ f3; 4g; gG1 f1p1ðdÞ ¼ f1; 2g:

Based on Eq. (12), the granular concepts of f1 and g1 are as

follows:

Gf1g1 ¼ fð1; ðabd; abdÞÞ; ð4; ðac; acÞÞ; ð12; ðbd; bdÞÞ;
ð14; ða; aÞÞ; ð34; ðc; cÞÞg:

Take DU1 ¼ f5; 6; 7; 8; 9g. We have

164 Int. J. Mach. Learn. & Cyber. (2017) 8:159–170

123



f GDU1
ð5Þ ¼ ðac; acÞ; f GDU1

ð6Þ ¼ ðb; bÞ; f GDU1
ð7Þ ¼ ðad; adÞ;

f GDU1
ð8Þ ¼ ðb; bÞ; f GDU1

ð9Þ ¼ ðc; cÞ:

Set DA1 ¼ fe; f ; gg. It follows
f GDA1

ð1Þ ¼ ð;; efgÞ; f GDA1
ð2Þ ¼ ð;; efgÞ; f GDA1

ð3Þ ¼ ð;; efgÞ;
f GDA1

ð4Þ ¼ ð;; efgÞ; f GDA1
ð5Þ ¼ ðe; eÞ; f GDA1

ð6Þ ¼ ðf ; f Þ;
f GDA1

ð7Þ ¼ ðg; gÞ; f GDA1
ð8Þ ¼ ðfg; fgÞ; f GDA1

ð9Þ ¼ ðe; eÞ:

Furthermore, let U2 ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9g and

A2 ¼ fa; b; c; d; e; f ; gg. By Eq. (17), we obtain

f G2 ð1Þ ¼ f G1 ð1Þ [ f GDA1
ð1Þ ¼ ðabd; abdÞ [ ð;; efgÞ ¼ ðabd; abdefgÞ;

f G2 ð2Þ ¼ f G1 ð2Þ [ f GDA1
ð2Þ ¼ ðbd; bdÞ [ ð;; efgÞ ¼ ðbd; bdefgÞ;

f G2 ð3Þ ¼ f G1 ð3Þ [ f GDA1
ð3Þ ¼ ðc; cÞ [ ð;; efgÞ ¼ ðc; cefgÞ;

f G2 ð4Þ ¼ f G1 ð4Þ [ f GDA1
ð4Þ ¼ ðac; acÞ [ ð;; efgÞ ¼ ðac; acefgÞ;

f G2 ð5Þ ¼ f GDU1
ð5Þ [ f GDA1

ð5Þ ¼ ðac; acÞ [ ðe; eÞ ¼ ðace; aceÞ;
f G2 ð6Þ ¼ f GDU1

ð6Þ [ f GDA1
ð6Þ ¼ ðb; bÞ [ ðf ; f Þ ¼ ðbf ; bf Þ;

f G2 ð7Þ ¼ f GDU1
ð7Þ [ f GDA1

ð7Þ ¼ ðad; adÞ [ ðg; gÞ ¼ ðadg; adgÞ;
f G2 ð8Þ ¼ f GDU1

ð8Þ [ f GDA1
ð8Þ ¼ ðb; bÞ [ ðfg; fgÞ ¼ ðbfg; bfgÞ;

f G2 ð9Þ ¼ f GDU1
ð9Þ [ f GDA1

ð9Þ ¼ ðc; cÞ [ ðe; eÞ ¼ ðce; ceÞ:

According to Eq. (18), we get

g2f
G
2 ð1Þ ¼ fx 2 U2jf G2 ð1Þ� f G2 ðxÞg ¼ f1g;

g2f
G
2 ð2Þ ¼ fx 2 U2jf G2 ð2Þ� f G2 ðxÞg ¼ f1; 2g;

g2f
G
2 ð3Þ ¼ fx 2 U2jf G2 ð3Þ� f G2 ðxÞg ¼ f3; 4g;
g2f

G
2 ð4Þ ¼ fx 2 U2jf G2 ð4Þ� f G2 ðxÞg ¼ f4g;

g2f
G
2 ð5Þ ¼ fx 2 U2jf G2 ð5Þ� f G2 ðxÞg ¼ f5g;

g2f
G
2 ð6Þ ¼ fx 2 U2jf G2 ð6Þ� f G2 ðxÞg ¼ f6; 8g;
g2f

G
2 ð7Þ ¼ fx 2 U2jf G2 ð7Þ� f G2 ðxÞg ¼ f7g;

g2f
G
2 ð8Þ ¼ fx 2 U2jf G2 ð8Þ� f G2 ðxÞg ¼ f8g;

g2f
G
2 ð9Þ ¼ fx 2 U2jf G2 ð9Þ� f G2 ðxÞg ¼ f5; 9g:

Based on Eq. (19), we conclude

p2ðaÞ ¼ f1; 4; 5; 7g; f2p2ðaÞ ¼
\

x2p2ðaÞ
f G2 ðxÞ ¼ ða; aÞ;

p2ðbÞ ¼ f1; 2; 6; 8g; f2p2ðbÞ ¼
\

x2p2ðbÞ
f G2 ðxÞ ¼ ðb; bf Þ;

p2ðcÞ ¼ f3; 4; 5; 9g; f2p2ðcÞ ¼
\

x2p2ðcÞ
f G2 ðxÞ ¼ ðc; ceÞ;

p2ðdÞ ¼ f1; 2; 7g; f2p2ðdÞ ¼
\

x2p2ðdÞ
f G2 ðxÞ ¼ ðd; dgÞ;

p2ðeÞ ¼ f5; 9g; f2p2ðeÞ ¼
\

x2p2ðeÞ
f G2 ðxÞ ¼ ðce; ceÞ;

p2ðf Þ ¼ f6; 8g; f2p2ðf Þ ¼
\

x2p2ðf Þ
f G2 ðxÞ ¼ ðbf ; bf Þ;

p2ðgÞ ¼ f7; 8g; f2p2ðgÞ ¼
\

x2p2ðgÞ
f G2 ðxÞ ¼ ðg; gÞ:

Then, it follows from Eq. (20) that

gG2 f2p2ðaÞ ¼ fx 2 U2jf2p2ðaÞ� f G2 ðxÞg ¼ f1; 4; 5; 7g;
gG2 f2p2ðbÞ ¼ fx 2 U2jf2p2ðbÞ� f G2 ðxÞg ¼ f1; 2; 6; 8g;
gG2 f2p2ðcÞ ¼ fx 2 U2jf2p2ðcÞ� f G2 ðxÞg ¼ f3; 4; 5; 9g;
gG2 f2p2ðdÞ ¼ fx 2 U2jf2p2ðdÞ� f G2 ðxÞg ¼ f1; 2; 7g;
gG2 f2p2ðeÞ ¼ fx 2 U2jf2p2ðeÞ� f G2 ðxÞg ¼ f5; 9g;
gG2 f2p2ðf Þ ¼ fx 2 U2jf2p2ðf Þ� f G2 ðxÞg ¼ f6; 8g;
gG2 f2p2ðgÞ ¼ fx 2 U2jf2p2ðgÞ� f G2 ðxÞg ¼ f7; 8g:

Consequently, the granular concepts of the approximate

cognitive computing system AS ¼ ASf2g2 are

ðX1; ðB1;C1ÞÞ ¼ ð1; ðabd; abdefgÞÞ; ðX2; ðB2;C2ÞÞ ¼ ð12; ðbd; bdefgÞÞ;
ðX3; ðB3;C3ÞÞ ¼ ð34; ðc; cefgÞÞ; ðX4; ðB4;C4ÞÞ ¼ ð4; ðac; acefgÞÞ;
ðX5; ðB5;C5ÞÞ ¼ ð5; ðace; aceÞÞ; ðX6; ðB6;C6ÞÞ ¼ ð68; ðbf ; bf ÞÞ;
ðX7; ðB7;C7ÞÞ ¼ ð7; ðadg; adgÞÞ; ðX8; ðB8;C8ÞÞ ¼ ð8; ðbfg; bfgÞÞ;
ðX9; ðB9;C9ÞÞ ¼ ð59; ðce; ceÞÞ; ðX10; ðB10;C10ÞÞ ¼ ð1457; ða; aÞÞ;
ðX11; ðB11;C11ÞÞ ¼ ð1268; ðb; bf ÞÞ; ðX12; ðB12;C12ÞÞ ¼ ð3459; ðc; ceÞÞ;
ðX13; ðB13;C13ÞÞ ¼ ð127; ðd; dgÞÞ; ðX14; ðB14;C14ÞÞ ¼ ð78; ðg; gÞÞ:

4 Cognitive processes

In Sect. 3, granular concepts were generated by an

approximate cognitive computing system. From the view-

point of cognitive computing, granular concepts are the

basic information granules stored in human brain. These

granular concepts will be reactivated when a clue comes

into mind, which is often called a cognitive process.

Since a clue may be objects, attributes or both of them,

cognitive processes will be investigated in this section from

three aspects: a) learn granular concept from an object set;

b) learn granular concept from a pair of attribute sets; c)

learn granular concept from both of them.

4.1 Granular concept learning from an object set

based on similarity

In cognitive computing, similarity is commonly adopted to

remember something when a clue is provided. Up to now,

there have been many methods for measuring concept

similarity. More details are omitted here. Interested readers

can refer to [6, 35].

The clue is assumed in this subsection to be a nonempty

object set X0. According to the above discussion, the

granular concepts Gfngn of an approximate cognitive com-

puting system AS ¼
Sn

i¼2fASLiHi
g are the basic knowl-

edge used to achieve the learning task.

In what follows, we first introduce the notion of simi-

larity between two nonempty object sets.

Definition 6 The similarity between two nonempty object

sets X1;X2 � Un is defined as
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suðX1;X2Þ ¼
1

2

jX1 \ X2j
jX1j

þ jX2 \ X1j
jX2j

	 

: ð21Þ

According to Definition 6, we have the following

proposition.

Proposition 1 For nonempty object sets X;X1;X2 � Un,

both suðX;XÞ ¼ 1 and suðX1;X2Þ ¼ suðX2;X1Þ are true.

Then, based on this similarity, granular concept learning

from a nonempty object set X0 is to select the granular

concept (X, (B, C)) which satisfies

suðX;X0Þ ¼ max
ðX0;ðB0;C0ÞÞ2Gfngn

fsuðX0;X0Þg: ð22Þ

Example 4 Continued with Example 3. Suppose that the

given clue isX0 ¼ f4; 5; 9g. Then, based onEq. (21), it follows

suðX1;X0Þ ¼
1

2

jX1 \ X0j
jX1j

þ jX0 \ X1j
jX0j

	 


¼ 1

2

jf1g \ f4; 5; 9gj
jf1gj þ jf4; 5; 9g \ f1gj

jf4; 5; 9gj

	 

¼ 0:

Similarly, we obtain the following equalities:

suðX2;X0Þ ¼
1

2

jX2 \ X0j
jX2j

þ jX0 \ X2j
jX0j

	 

¼ 0;

suðX3;X0Þ ¼
1

2

jX3 \ X0j
jX3j

þ jX0 \ X3j
jX0j

	 

¼ 5

12
;

suðX4;X0Þ ¼
1

2

jX4 \ X0j
jX4j

þ jX0 \ X4j
jX0j

	 

¼ 2

3
;

suðX5;X0Þ ¼
1

2

jX5 \ X0j
jX5j

þ jX0 \ X5j
jX0j

	 

¼ 2

3
;

suðX6;X0Þ ¼
1

2

jX6 \ X0j
jX6j

þ jX0 \ X6j
jX0j

	 

¼ 0;

suðX7;X0Þ ¼
1

2

jX7 \ X0j
jX7j

þ jX0 \ X7j
jX0j

	 

¼ 0;

suðX8;X0Þ ¼
1

2

jX8 \ X0j
jX8j

þ jX0 \ X8j
jX0j

	 

¼ 0;

suðX9;X0Þ ¼
1

2

jX9 \ X0j
jX9j

þ jX0 \ X9j
jX0j

	 

¼ 5

6
;

suðX10;X0Þ ¼
1

2

jX10 \ X0j
jX10j

þ jX0 \ X10j
jX0j

	 

¼ 7

12
;

suðX11;X0Þ ¼
1

2

jX11 \ X0j
jX11j

þ jX0 \ X11j
jX0j

	 

¼ 0;

suðX12;X0Þ ¼
1

2

jX12 \ X0j
jX12j

þ jX0 \ X12j
jX0j

	 

¼ 7

8
;

suðX13;X0Þ ¼
1

2

jX13 \ X0j
jX13j

þ jX0 \ X13j
jX0j

	 

¼ 0;

suðX14;X0Þ ¼
1

2

jX14 \ X0j
jX14j

þ jX0 \ X14j
jX0j

	 

¼ 0:

That is, ðX12; ðB12;C12ÞÞ ¼ ð3459; ðc; ceÞÞ with the simi-

larity suðX12;X0Þ ¼ 7
8
is the best granular concept which

matches the given clue.

4.2 Granular concept learning from a pair

of attribute sets based on similarity

Similarly, to learn granular concept from a pair of attribute

sets, similarity between attributes sets is also required.

Definition 7 Let ðB1;C1Þ; ðB2;C2Þ 2 2An � 2An and

k 2 ð0; 1Þ. Then, the similarity between ðB1;C1Þ and

ðB2;C2Þ is defined as

saaððB1;C1Þ; ðB2;C2ÞÞ ¼ ksaðB1;B2Þ
þ ð1� kÞsaðC1;C2Þ; ð23Þ

where sað�; �Þ is the similarity similar to the one specified in

Eq. (21).

Note that in Definition 7, k is a weight parameter used to

adjust the significance of the certain and possible parts.

Furthermore, we have the following proposition.

Proposition 2 For ðB;CÞ; ðB1;C1Þ; ðB2;C2Þ 2 2An � 2An ,

we have saaððB;CÞ; ðB;CÞÞ ¼ 1 and

saaððB1;C1Þ; ðB2;C2ÞÞ ¼ saaððB2;C2Þ; ðB1;C1ÞÞ.
Then, based on this similarity, granular concept learn-

ing from a pair of attribute sets ðB0;C0Þ is to select the

granular concept (X, (B, C)) which satisfies

saaððB;CÞ; ðB0;C0ÞÞ
¼ max

ðX0;ðB0;C0ÞÞ2Gfngn

fsaaððB0;C0Þ; ðB0;C0ÞÞg: ð24Þ

Example 5 Continued with Example 3. Suppose that the

given clue is ðB0;C0Þ ¼ ðac; ceÞ and k ¼ 3
5
. Then, based on

Eq. (23), it follows

saaððB1;C1Þ; ðB0;C0ÞÞ ¼ ksaðB1;B0Þ þ ð1� kÞsaðC1;C0Þ

¼ k
2

jB1 \ B0j
jB1j

þ jB0 \ B1j
jB0j

	 


þ 1� k
2

jC1 \ C0j
jC1j

þ jC0 \ C1j
jC0j

	 


¼ 23

60
:

Similarly, we obtain the following equalities:

saaððB2;C2Þ; ðB0;C0ÞÞ ¼ ksaðB2;B0Þ þ ð1� kÞsaðC2;C0Þ ¼
7

50
;

saaððB3;C3Þ; ðB0;C0ÞÞ ¼ ksaðB3;B0Þ þ ð1� kÞsaðC3;C0Þ ¼
3

4
;

saaððB4;C4Þ; ðB0;C0ÞÞ ¼ ksaðB4;B0Þ þ ð1� kÞsaðC4;C0Þ ¼
22

25
;

saaððB5;C5Þ; ðB0;C0ÞÞ ¼ ksaðB5;B0Þ þ ð1� kÞsaðC5;C0Þ ¼
5

6
;

saaððB6;C6Þ; ðB0;C0ÞÞ ¼ ksaðB6;B0Þ þ ð1� kÞsaðC6;C0Þ ¼ 0;

saaððB7;C7Þ; ðB0;C0ÞÞ ¼ ksaðB7;B0Þ þ ð1� kÞsaðC7;C0Þ ¼
1

4
;

saaððB8;C8Þ; ðB0;C0ÞÞ ¼ ksaðB8;B0Þ þ ð1� kÞsaðC8;C0Þ ¼ 0;
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saaððB9;C9Þ; ðB0;C0ÞÞ ¼ ksaðB9;B0Þ þ ð1� kÞsaðC9;C0Þ ¼
7

10
;

saaððB10;C10Þ; ðB0;C0ÞÞ ¼ ksaðB10;B0Þ þ ð1� kÞsaðC10;C0Þ ¼
9

20
;

saaððB11;C11Þ; ðB0;C0ÞÞ ¼ ksaðB11;B0Þ þ ð1� kÞsaðC11;C0Þ ¼ 0;

saaððB12;C12Þ; ðB0;C0ÞÞ ¼ ksaðB12;B0Þ þ ð1� kÞsaðC12;C0Þ ¼
51

60
;

saaððB13;C13Þ; ðB0;C0ÞÞ ¼ ksaðB13;B0Þ þ ð1� kÞsaðC13;C0Þ ¼ 0;

saaððB14;C14Þ; ðB0;C0ÞÞ ¼ ksaðB14;B0Þ þ ð1� kÞsaðC14;C0Þ ¼ 0:

That is, ðX12; ðB12;C12ÞÞ ¼ ð3459; ðc; ceÞÞ with the simi-

larity saaððB12;C12Þ; ðB0;C0ÞÞ ¼ 51
60

is the best granular

concept which matches the given clue.

4.3 Granular concept learning from an object set

and a pair of attribute sets based on similarity

Definition 8 Let X1;X2 � Un, ðB1;C1Þ; ðB2;C2Þ 2 2An �
2An and l 2 ð0; 1Þ. Then, the similarity between

ðX1; ðB1;C1ÞÞ and ðX2; ðB2;C2ÞÞ is defined as

sððX1; ðB1;C1ÞÞ; ðX2; ðB2;C2ÞÞÞ
¼ lsuðX1;X2Þ þ ð1� lÞsaaððB1;C1Þ; ðB2;C2ÞÞ:

Note that in Definition 8, l is a weight parameter used to

adjust the significance of an object set and a pair of attri-

bute sets. Furthermore, we have the following proposition.

Proposition 3 Let X;X1;X2 � Un and ðB;CÞ; ðB1;C1Þ;
ðB2;C2Þ 2 2An � 2An . Then, sððX; ðB;CÞÞ; ðX; ðB;CÞÞÞ ¼ 1

and sððX1; ðB1;C1ÞÞ; ðX2; ðB2;C2ÞÞÞ ¼ sððX2; ðB2;C2ÞÞ;
ðX1; ðB1;C1ÞÞÞ.

Then, based on this similarity, granular concept learn-

ing from an object set X0 and a pair of attribute sets

ðB0;C0Þ is to select the granular concept (X, (B, C)) which

satisfies

sððX; ðB;CÞÞ; ðX0; ðB0;C0ÞÞÞ
¼ max

ðX0;ðB0;C0ÞÞ2Gfngn

fsððX0; ðB0;C0ÞÞ; ðX0; ðB0;C0ÞÞÞg:

Example 6 Continued with Example 3. Suppose that the

given clue is constituted by X0 ¼ f4; 5; 9g and

ðB0;C0Þ ¼ ðac; ceÞ. Take l ¼ k ¼ 3
5
. Then, it follows from

Definition 8 that

sððX1; ðB1;C1ÞÞ; ðX0; ðB0;C0ÞÞÞ

¼ lsuðX1;X0Þ þ ð1� lÞsaaððB1;C1Þ; ðB0;C0ÞÞ ¼
23

60
:

Similarly, we obtain the following equalities:

sððX2; ðB2;C2ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
21

250
;

sððX3; ðB3;C3ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
37

60
;

sððX4; ðB4;C4ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
298

375
;

sððX5; ðB5;C5ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
23

30
;

sððX6; ðB6;C6ÞÞ; ðX0; ðB0;C0ÞÞÞÞ ¼0;

sððX7; ðB7;C7ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
3

20
;

sððX8; ðB8;C8ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼0;

sððX9; ðB9;C9ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
113

150
;

sððX10; ðB10;C10ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
151

300
;

sððX11; ðB11;C11ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼0;

sððX12; ðB12;C12ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼
43

50
;

sððX13; ðB13;C13ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼0;

sððX14; ðB14;C14ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼0:

That is, ðX12; ðB12;C12ÞÞ ¼ ð3459; ðc; ceÞÞ with the simi-

larity sððX12; ðB12;C12ÞÞ; ðX0; ðB0;C0ÞÞÞ ¼ 43
50

is the best

granular concept which matches the given clue.

5 Numerical experiments

In this section, we conduct some numerical experiments to

evaluate the proposed cognitive concept learning

algorithms.

In the experiments, we selected five data sets totally

from UCI Machine Learning Repository [7] to achieve the

evaluation task. That is, Post-Operative Patient data set,

Hepatitis data set, Meta-data data set, Breast Cancer Wis-

consin (Original) data set and Mushroom data set. Since all

of them are not the standard data sets which can directly be

used to evaluate the proposed concept learning algorithms,

different data pre-processing techniques are required to

convert them. In what follows, we introduce the details of

these data pre-processing techniques.

(1) Post-Operative Patient data set contains 90 instances

(each of them representing a patient) and 8

attributes. The eighth attribute has 3 missing values

and we divided its values into three categories: the

first category is less than or equal to 7, the second is
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located between 7 and 14, and the third is greater

than or equal to 14. In addition, each of other

attributes has three values except the third one

having four values. Then, the scaling approach [8]

was applied to the data set for generating a standard

one. We denote it by Data set 1.

(2) Hepatitis data set has 155 instances and 19 attributes.

In this data set, the fifth, sixth and seventh attributes

have one missing value, the sixteenth has 4 missing

values, the tenth, eleventh, twelfth and thirteenth

have 5 missing values, the fourteenth has 6 missing

values, the eighth has 9 missing values, the ninth has

10 missing values, the seventeenth has 16 missing

values, the fifteenth has 27 missing values, and the

eighteenth has 62 missing vales. In the experiments,

each attribute was binarized. Then, a standard data

set is obtained, and we denote it by Data set 2.

(3) Meta-data data set contains 528 instances and 22

attributes. Since there are huge differences among

the attributes, we only selected eleven of them which

are from the fourth to the fourteenth. In this data set,

both the eleventh and thirteenth attributes have 38

missing values. For the purpose of generating a

standard data set, each attribute was binarized. We

denote this standard data set by Data set 3.

(4) Breast Cancer Wisconsin (Original) data set contains

699 instances (each of them representing a patient)

and 10 attributes. In this data set, the sixth attribute

has 16 missing values. Once again, each attribute

was binarized to generate a standard data set which

is denoted by Data set 4.

(5) Mushroom data set consists of 8124 instances and 22

attributes. The twelfth attribute contains 2480 miss-

ing values. In the experiments, we split the values of

each attribute, from small to large, into three

pairwise disjoint intervals whose lengths are the

same. Then, it was converted by the scaling

approach into a standard data set. We denote it by

Data set 5.

Furthermore, Data sets 1, 2, 3, 4 and 5 were divided into

segments for designing their corresponding approximate

cognitive computing systems: ASð1Þ ¼
S4

i¼2fASð1Þ
figi
g,

ASð2Þ ¼
S4

i¼2fASð2Þ
figi
g, ASð3Þ ¼

S4
i¼2fASð3Þ

figi
g, ASð4Þ ¼

S4
i¼2fASð4Þ

figi
g and ASð5Þ ¼

S4
i¼2fASð5Þ

figi
g. See Table 3 for

the details, where ACCS is the abbreviation of ‘‘Approxi-

mate cognitive computing system’’. In the table, Ui ¼
fx	 yg means that Ui is constituted by the objects between

the x-th and y-th including the endpoints, so is Ai.

For convenience of description, we denote by Algo-

rithms 2, 3, and 4 respectively the processes of learning

granular concepts from an object set, a pair of attribute sets,

and both of them. Moreover, we took the weight parame-

ters k ¼ l ¼ 0:6. Then, Algorithms 1, 2, 3 and 4 were

applied to Data sets 1, 2, 3, 4 and 5. The corresponding

Table 3 Designing

approximate cognitive

computing systems for the

obtained standard data sets

ACCS Design of parameters

ASð1Þ U1 ¼ f1	 20g, A1 ¼ f1	 12g, U2 ¼ f1	 45g, A2 ¼ f1	 12g,
U3 ¼ f1	 45g, A3 ¼ f1	 25g, U4 ¼ f1	 90g, A4 ¼ f1	 25g

ASð2Þ U1 ¼ f1	 40g, A1 ¼ f1	 19g, U2 ¼ f1	 80g, A2 ¼ f1	 19g,
U3 ¼ f1	 80g, A3 ¼ f1	 38g, U4 ¼ f1	 155g, A4 ¼ f1	 38g

ASð3Þ U1 ¼ f1	 123g, A1 ¼ f1	 11g, U2 ¼ f1	 264g, A2 ¼ f1	 11g,
U3 ¼ f1	 264g, A3 ¼ f1	 22g, U4 ¼ f1	 528g, A4 ¼ f1	 22g

ASð4Þ U1 ¼ f1	 275g, A1 ¼ f1	 10g, U2 ¼ f1	 350g, A2 ¼ f1	 10g,
U3 ¼ f1	 350g, A3 ¼ f1	 20g, U4 ¼ f1	 699g, A4 ¼ f1	 20g

ASð5Þ U1 ¼ f1	 203g, A1 ¼ f1	 33g, U2 ¼ f1	 4062g, A2 ¼ f1	 33g,
U3 ¼ f1	 4062g, A3 ¼ f1	 45g, U4 ¼ f1	 8124g, A4 ¼ f1	 66g

Table 4 Experimental results
Running time(s)

Data set |U| |A| n Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Data set 1 90 25 4 0.56 0.01 0.03 0.11

Data set 2 155 38 4 6.27 0.06 0.12 0.34

Data set 3 528 22 4 1.09 0.02 0.07 0.15

Data set 4 699 20 4 6.16 0.78 0.99 1.92

Data set 5 8,124 66 4 1888.23 0.79 1.31 2.19
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running time is reported in Table 4, where |U| is the car-

dinality of the object set, |A| is that of the attribute set, and

n is the number of approximate cognitive computing states.

Note that in the experiments, we generated 100 clues

randomly for Algorithm 2 as well as Algorithms 3 and 4. In

other words, only the average running time of Algorithms

2, 3 and 4 is reported in Table 4. Finally, it can be observed

from the table that all the algorithms are reasonably effi-

cient for the five chosen data sets.

It deserves to be mentioned that the time complexity of

Algorithm 1 is OðnðjUnj þ jAnjÞjUnjjAnjÞ, while those of

Algorithms 2, 3 and 4 are OðjUnj2 þ jUnjjAnj þ jAnj2Þ.
That is to say, the time complexity of Algorithm 1 is far

more than those of Algorithms 2, 3 and 4 in theory. This

was also confirmed indirectly by Data set 5 in the

experiments.

6 Final remarks

Cognitive concept learning has become a hot topic in

recent years, and it has attracted much attention from the

communities of formal concept analysis, granular com-

puting and cognitive computing. However, it is still at the

immature stage. That is, more theoretical frameworks,

effective methods and potential applications are needed to

be improved.

Our current work mainly focuses on cognitive concept

learning from incomplete information. Specifically, we

have proposed a pair of approximate cognitive operators

and an approximate cognitive computing system to form

and update granular concepts. Moreover, cognitive pro-

cesses have been simulated based on three types of simi-

larities to learn granular concept from a given clue. In

addition, we have conducted some numerical experiments

to evaluate the effectiveness of the proposed concept

learning methods.

Compared to the existing work, the main contributions

of our paper are as follows: (1) new cognitive operators

have been defined for incomplete information environ-

ment; (2) an approximate cognitive computing system has

been designed for applying incomplete information fusion;

(3) three types of similarities have been presented and used

to learn granular concepts from given clues.

It should also be pointed out that our work is completely

different from the one in [13] although both of them dis-

cussed concept learning from incomplete information. As a

matter of fact, our work is to learn part of concepts, while

the one in [13] is to learn all of concepts. In addition,

concept learning in our work was realized by an axiomatic

method, while that in [13] was done by a constructive

method.

Note that learning cognitive concepts from incomplete

information is a challenging task. Although our work has

put forward some theoretical frameworks and methods to

address this problem, it is still not enough in many aspects.

For example, how to apply them in the real world? It

includes the semantic explanation of approximate cognitive

concepts, the assignment of the parameters k and l, the
evaluation of the learnt granular concepts, and how to

improve the learning efficiency [17]. Moreover, cognitive

logic [26, 50] should be incorporated into cognitive con-

cept learning, and uncertainty [29] needs to be considered

in incomplete information [29]. Besides, learning cognitive

concepts from fuzzy data [31–33] also deserves to be

investigated. Undoubtedly, approaches to cognitive con-

cept learning from incomplete information cannot be

directly extended to the case of fuzzy information since

both knowledge representation and information measure

are extremely different [1, 9, 30]. These issues will be

studied in our future work.
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